skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Osman, Hussien_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A new ternary lithium zinc germanide, Li13.83Zn1.17(2)Ge4, was synthesized by a high‐temperature solid state reaction of the respective elements. The crystal structure was determined by single‐crystal X‐ray diffraction methods. The new phase crystallizes in the body‐centered cubic space groupI3d(no. 220) with unit cell parameter of 10.695(1) Å. The crystal structure refinements show that the parent Li15Ge4structure is stabilized as Li15−xZnxGe4(x≈1) via random substitution of Li atoms by the one‐electron‐richer atoms of the element Zn, by virtue of which the number of valence electrons increases, leading to a more electronically stable system. The substitution effects in the parent Li15Ge4structure were investigated through both theory and experiment, which confirm that the Zn atoms in this structure prefer to occupy only one of the two available crystallographic sites for Li. The preferred substitution pattern established from experimental results is supported by DFT electronic structure calculations, which also explore the subtleties of the chemical bonding and the electronic properties of the title compounds. 
    more » « less